Graphene as an atomically thin barrier to Cu diffusion into Si.

نویسندگان

  • Juree Hong
  • Sanggeun Lee
  • Seulah Lee
  • Heetak Han
  • Chandreswar Mahata
  • Han-Wool Yeon
  • Bonwoong Koo
  • Seong-Il Kim
  • Taewook Nam
  • Kisik Byun
  • Byung-Wook Min
  • Young-Woon Kim
  • Hyungjun Kim
  • Young-Chang Joo
  • Taeyoon Lee
چکیده

The evolution of copper-based interconnects requires the realization of an ultrathin diffusion barrier layer between the Cu interconnect and insulating layers. The present work reports the use of atomically thin layer graphene as a diffusion barrier to Cu metallization. The diffusion barrier performance is investigated by varying the grain size and thickness of the graphene layer; single-layer graphene of average grain size 2 ± 1 μm (denoted small-grain SLG), single-layer graphene of average grain size 10 ± 2 μm (denoted large-grain SLG), and multi-layer graphene (MLG) of thickness 5-10 nm. The thermal stability of these barriers is investigated after annealing Cu/small-grain SLG/Si, Cu/large-grain SLG/Si, and Cu/MLG/Si stacks at different temperatures ranging from 500 to 900 °C. X-ray diffraction, transmission electron microscopy, and time-of-flight secondary ion mass spectroscopy analyses confirm that the small-grain SLG barrier is stable after annealing up to 700 °C and that the large-grain SLG and MLG barriers are stable after annealing at 900 °C for 30 min under a mixed Ar and H2 gas atmosphere. The time-dependent dielectric breakdown (TDDB) test is used to evaluate graphene as a Cu diffusion barrier under real device operating conditions, revealing that both large-grain SLG and MLG have excellent barrier performance, while small-grain SLG fails quickly. Notably, the large-grain SLG acts as a better diffusion barrier than the thicker MLG in the TDDB test, indicating that the grain boundary density of a graphene diffusion barrier is more important than its thickness. The near-zero-thickness SLG serves as a promising Cu diffusion barrier for advanced metallization.

منابع مشابه

Tantalum-based diffusion barriers in Si/Cu VLSI metallizations

We have studied sputter-deposited Ta, Ta s6 ‘t4, and Ta3&ir4N~e thin lilms as diffusion Sr barriers between Cu overlayers and Si substrates. Electrical measurements on Si n +p shallow junction diodes demonstrate that a 180-nm-thick Ta film is not an effective diffusion barrier. For the standard test of 30-min annealing in vacuum applied in the present study, the Ta barrier fails after annealing...

متن کامل

Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si

Various structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5-3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate. The various structures of Cu/Ru/MgO/Ta/Si were characterized by four-point probes for their sheet resi...

متن کامل

Graphene Crystal Growth Engineering on Epitaxial Copper Thin Films

In this work 1 , we study graphene growth dynamics on epitaxial Cu thin film substrates by chemical vapor deposition (CVD). These surfaces have a single crystallographic orientation and are atomically smooth, unlike their foil counterparts, making them better platforms on which to reproducibly synthesize highquality graphene and study crystal growth evolution. Consequently, we gained novel insi...

متن کامل

Protecting the properties of monolayer MoS₂ on silicon based substrates with an atomically thin buffer.

Semiconducting 2D materials, like transition metal dichalcogenides (TMDs), have gained much attention for their potential in opto-electronic devices, valleytronic schemes, and semi-conducting to metallic phase engineering. However, like graphene and other atomically thin materials, they lose key properties when placed on a substrate like silicon, including quenching of photoluminescence, distor...

متن کامل

Diffusion mechanism of lithium ion through basal plane of layered graphene.

Coexistence of both edge plane and basal plane in graphite often hinders the understanding of lithium ion diffusion mechanism. In this report, two types of graphene samples were prepared by chemical vapor deposition (CVD): (i) well-defined basal plane graphene grown on Cu foil and (ii) edge plane-enriched graphene layers grown on Ni film. Electrochemical performance of the graphene electrode ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Nanoscale

دوره 6 13  شماره 

صفحات  -

تاریخ انتشار 2014